Revolutions in Semiconductor Detectors
R. Lipton (Fermilab)

You probably don’t have to be told that we have been living in an age
which has seen revolutionary developments in semiconductor
technology

* There are unprecedented opportunities to use these
developments for our science

 HEP has often led the way in device and detector technologies
o Detector scale
o Detector resolution
o Difficult thermal and radiation environments
o High density of functionality

We also have the ability and motivation to try new technologies —
important to companies seeking a foothold.



Detector Commandments

. Thou shalt minimize mass

. Thou shalt have high bandwidth
. Thou shalt be radiation hard

. Thou shalt not dissipate power

. Thou shalt have complex functionality
. Thou shalt not bear false witness (good resolution)
. Thou shalt not kill (no dead regions)

. Thou shalt not covet thy neighbors signals (minimize crosstalk)
Honor thy funding agencies (keep costs down)
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Palette of Future Detectors

ILC Vertex Detector
e Superb impact parameter resolution

e Transparency, low power
Muon Collider

e All requirements for the ILC plus ...

* Substantial detector and radiation backgrounds
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e JLC + few ns time resolution
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e 200-400 int/25 ns crossing 1016
5:

* Triggering and data flow

Intensity Frontier

* Precise timing, fast response 5
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* Low mass, precise tracking

* High mass semiconductor arrays for dark matter
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* Imaging detectors for focal planes
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Enabling R&D

There are a few circumstances that haves .+
enabled these opportunities '

 Silicon (and other semiconductor)
foundries which can offer |
specialized processes
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* Design tools which model | s

semiconductor physics in detail
* ASIC design tools
 Companies offering specific
processing and interconnect
services

e University Nanofabrication
facilities

* Collaborations to share costs )
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Application Specific Semiconductor
Detectors

In many cases we can now tailor a device to an application. The palette includes:
Material
* Silicon
o Epitaxial (thin deposited layers), float zone, magnetic Czochralski
* Ge, SiC, GaN, Diamond, carbon nanotubes, organic semiconductors ....
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* Charge manipulation and storage (CCD, silicon drift)
Charge collection
e Diffusion (slow, CMOS MAPS)

* Drift — design for optimal fields
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Solving Problems - MAPS

MAPs — technology used in cameras using
charge collection by diffusion in a thin(~5
um) epitaxial layer

Slow-charge Low S/N Charge lost to
collection by parasitic PMOS
diffusion J /\
l Thick, high 4 Well process || 3D assemblies
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Example-SOl

An SOI device contains a thin (200nm) silicon
device layer mounted on a “handle” wafer.
Handle can be a high resistivity detector.

First studied in 1993 by CERN/CPPM/IMEC
2000s Crakow group in-house fabrication

FNAL SBIR studies with American
Semiconductor dual gate transistors

Detector-only wafer
KEK-organized multiproject runs with OKI

Excellent foundry-FNAL communication

Physical models to understand digital-
analog crosstalk

Cornell - device simulation
Parallel work on thinning/backside process

Qualification of 3M thinning process

Development of laser anneal process
(FNAL-Cornell)
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More complex architectures

* Nested well shielding
implants for SOl and CMOS
devices

o Reduce digital-analog
coupling and backgate

effects NMOS Diode NMOS PMOS
C 1 ] ]
o INMAPS quad well A
L P-Well P-Well
process (RAL) > Deep P-Well

P-epitaxial layer

* |SIS concept — mate CCD
and CMOS processing D
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3D Electronics

Industry and government initiatives to develop
“vertical integration” as it was recognized that Inter-tier 3
scaling feature size would not extend Moore’s bond pads ™\
law beyond ~ 2020

The 3D technology development progra as
provided new sets of capabilities:

 Wafer bonding

o Sensor/readout integration Tezzaron 2-tier wafer,
e Etching and processing of'grecision vias
in silicon

o Fine pitch interconnect

o 3D and edgeless sensor technology
* Precision alignment
e Wafer thinning

o Low mass sensors

o Backside processing
New ways to think electronics/detector integration. Capabilities are accessible now



Interconnections

Cu-Cu
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Cu-Sn Indium




3D Applications

We are just at the beginning of exploring 3D
FNAL Tezzaron/Chartered + KEK/OKI + Future
* 3D sensors (S. Parker et al)
* [LC Vertex -—
e LHC track trigger

e X-ray imaging with time tag

 CMOS pixel with PMOS devices
placed on the tier without sensing diodes

(]

ide Metal

Tier 1
(thinned wafer)

e ATLAS pixel chip size reduction > ::;&nd.nteﬁace

* Super B vertex o=

Tier 2

* X-ray imaging

* B factory Vertex
« CMOS/CCD integration
* SiPM with per pixel digital readout

* 3D associative memories for triggering




3D Examples

CMS Track trigger

* Need to correlate hits from 2 layers separated
by Ymm to filter on p,>2-3 GeV

e 3D allows connection of chip to both top and
bottom sensors space by low density interposer

e Correlations formed locally by bottom chip,
saving power, complexity

Fast 3D associative memories for triggering

* Arrange multi-tier memory to correspond to
tracking layers

4-side buttable edgeless 'T.erzﬂ e
imagers (MIL-LL)

Back llluminated photodetector tier
50um thick high resistivity silicon

sensor
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Multiproject Collaborations

repeated Z|ptronix reticle
to provide Ziptronix metal density
and avoid additional set of masks

targets H ‘ targets H?
e e

16mm

Fermilab/Tezzaron 2 tier CMOS 3D reticule

MIT—LL 3 tler SOI 3D reticule



Nano-Injectors
(Northwestern U.)

Combination of semiconductor near IR detector and nanofabricated

electrodes

* Hole is generated in the bulk and drifts/diffuses to the injector
e Drift to 50 nm high and 100 nm wide diameter nanoinjector

* Low capacitance of the node -> single hole can lower the potential barrier
enough to transfer stored charge. Single hole creates an effective charge

density of more than 400 C/m3.

Non-avalanche charge gain(10k) with noise lower than shot noise
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Thick detectors

Independently process complex top
and bottom readout wafers

 Use thick material from boules
as sensor region

e Wafer bond to readout
electronics

This eliminates some of the
constraints on device thickness due
to processing equipment

Dark matter detector?

- Process developed at NRL

Gate 1

— High lifetime ~
5mS

— High resistivity ~
10,000 ohm-cm

— 2 mm thick




Very Thin Trackers

What is the thinnest “practical” silicon tracker?

NOISe = ENC? = (Cyy + €, 120
Increasing g, costs power (g..~1,),
minimize Cg->pixels ~ 10 ff possible
minimal coupling to other electrodes
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Power

Power distribution will be a major challenge in
future experiments

* Underestimated in LHC experiments,
~60% of power dissipated in cables

* Power pulsing in ILC experiments peak
current ~100-200 x average current

* Low voltage operation -> high current

e (Cable mass is unacceptable -> serial
powering or DC-DC conversion

Need high voltage, low loss, radiation hard
power conversion. (Yale)

e DC-DC near Load Losses > 12 x R

e Silicon +10 | Reduction: Power Losses
reduced by 100

e GaN <+ 50 | Reduction: Power Losses
reduced by 2500 — lower resistive, joule
losses, rad hard

Potential LV DC-DC Power Stage Roadmap

Optimized Performance — Without tradeoff
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Electronics and ASICs

ASICs are now at the heart of most experiment systems
* Expertise is scarce and expensive
* Tools are costly for labs (mostly cheap for universities)

* Run at full speed to keep up with changes in technologies, design
requirements ...

* Need a “team” with varied expertise to be most productive
o Laboratory groups
o Collaboration with university EE Depts.
o Inter-laboratory collaboration

* Need to utilize multiproject runs to contain costs

Testing is crucial and complex

e Wafer probing

* Functional testing (stimulus systems)

* Radiation testing

* Beam tests




Future Opportunities

Cheaper, large area devices for (particle
flow) calorimetery

Printed semiconductors

e Large area high energy density -
(calorimeters) SOl-based from American Semiconductor
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Thinned, flexible sensors

Organic semiconductors

JActive:matrix backplane

e 103 too slow?, large bandgap
Hydrogenated amorphous silicon ——»
* Laser annealed?

Photolithography ' i ' i
ﬁn’\ g 0""nme r1rig.1 & o
Photomask Flexible image sensor

array with bulk

@j—lQ . | ' heterojunction organic

e Takeip Roll Flex'ible a-Si:H sensor array photodiode
fabricated at 150 °C, patterned by

ink-jet digital lithography on PEN




Getting Involved

A healthy national R&D program requires involvement at many levels
* National labs can provide

* Test beams
* Engineering support (especially ASIC)
* Major equipment
* Coordination
* Universities can provide
* Design and physical simulation
* Sophisticated software often cheap or free to universities
e Testing using students and postdocs
* Contact with Nanofabrication faculties

e Students can often do “hands on” work

* Range of unique capabilities designed as user facilities



Conclusions

Vast range of R&D Opportunities in semiconductor detectors

* Integration detectors and electronics

* Extremely thin detectors

 Mating of heterogeneous detector types

* “Application Specific” designs

* |[ntegration of detectors with nanotechnology

e Vertical integration of electronics and sensors
Collaboration is essential

* The only way to afford silicon fabrication

* Close collaboration with industry to develop technology

e Software, expertise, lab capabilities are distributed among
laboratories and universities.



